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A B S T R A C T

Investigations of wave propagation in composite materials have been used both to experimentally measure
material properties and to validate material property model characterizations. For continuous fiber reinforced
composites, these characterizations often have relied on a bulk description of the effective behavior of a
Representative Volume Element (RVE) and assumed ideal conditions of transverse isotropy and a well defined
direction of the fibers. Analytic models, based on these composite properties and fiber directions, can then
be used to predict the speeds of waves propagating through the material. The goal of this work is to develop
a probabilistic simulation to examine how variations in the composite properties and small angles of mis-
alignment of the fibers affect wave speed. To achieve this, a joint probability function is constructed where a
dominant material property and the angle of fiber orientation are considered independent random variables.
Sampling from this joint distribution produces pairs of parameters that can be input into wave speed analysis.
The resulting wave speed distributions can be used to characterize the joint effects of randomness in material
property and fiber angle.

1. Introduction

Probabilistic modeling of the random properties of composite ma-
terials has the potential to provide more realistic estimates of the
mechanical behavior of these materials and to help understand the ele-
ments of material design. Capturing variability of a property, however,
is only the first step. The next is to be able to simulate a response based
on that variable or random description. In many cases, this will involve
including more than one random variable into a simulation process.
This work illustrates the process whereby wave speeds in a random
fiber reinforced composite material can be modeled and simulated.
Wave speed is cast as a function of two random variables, depending on
both a primary, with respect to wave speed, material property and the
angle of fiber orientation relative to the direction of wave propagation.
A joint probability distribution function is constructed and parameters
pairs sampled from this distribution and used to simulate wave speeds.

Wave propagation has a long history related to composite material
modeling. Low frequency waves have been used both to experimen-
tally identify material properties [1,2] as well as validate mechanical
models [3]. Much of the literature devoted to wave propagation in
transversely isotropic media relates to geophysical applications, where
wave propagation measurements are used to estimate properties of
layered rock [4,5]. A comprehensive study of wave propagation in
anisotropic media can be found in [6].

It has been shown in [1,6], among others, that solution of the
Kelvin–Christoffel equation [7], leads to a determination of wave phase
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velocities. These velocities are given as a function of material properties
and the incident angle of wave propagation through a transversely
isotropic medium. Equations adapted from this analysis are presented
in what follows. Consider a transversely isotropic fiber reinforced com-
posite with the fiber direction labeled 𝑥3 and the 𝑥1 − 𝑥2 plane des-
ignated as the transverse plane of isotropy. Such a cross-section is
shown in Fig. 1. If 𝑣 is the wave velocity, 𝜌 is the density, and 𝜃 is
the angle between the preferred or fiber direction and the direction of
propagation of the wave, then the velocity of a transverse wave is given
by

𝑣 = [(𝐶66 cos2 𝜃 + 𝐶44 sin
2 𝜃)∕𝜌]1∕2. (1)

The 𝐶𝑖𝑗 terms are elements of the stiffness tensor, C of the composite.
Eq. (1) models transverse waves that have displacements perpendicular
to the plane which contains the preferred direction (fiber) and the
propagating direction of the wave. This formula reduces to velocities in
the fiber direction and perpendicular to the fiber direction when 𝜃 = 0◦

or 90◦, respectively.
Waves that are not purely transverse or purely longitudinal (dis-

placements in the propagating direction) have wave speeds represented
by the following quadratic equation in 𝑣2

(𝐶33 cos2 𝜃 + 𝐶66 sin
2 𝜃 − 𝜌𝑣2)(𝐶11 sin

2 𝜃 + 𝐶66 cos2 𝜃 − 𝜌𝑣2)

= (𝐶66 + 𝐶23)2 cos2 𝜃 sin
2 𝜃. (2)
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Fig. 1. Representative Volume Element (RVE) of the transverse section of a composite
microstructure with uniformly randomly distributed fibers; fibers have circular cross
sections.

Fig. 2. Plots of wave speeds for transverse, quasi-transverse and quasi-longitudinal,
from Eqs. (1), (2), for a fixed set of stiffnesses over a wide range of 𝜃.

The resulting waves are referred to as quasi-longitudinal, quasi-
transverse waves. Fig. 2 shows plots of Eq. (1) and the real, positive
and negative roots of Eq. (2) over a wide range of 𝜃. In what follows,
a narrower range of 𝜃 is considered.

Material properties in composites are often described as isotropic
or transversely isotropic in a bulk, or effective sense, at the scale of a
Representative Volume Element (RVE). This characterization is accu-
rate where the scale of variation of the material morphology is much
less than the scale of the macroscopic deformation. In the study of wave
propagation, an effective medium is termed ‘‘long wave equivalent’’
where it behaves as a homogeneous medium for wave lengths larger
than a given characteristic length [8].

Accurate RVE characterization is the focus of much study [9].
Clearly, this characterization is centrally important to the validity of
any analysis that results from it. Statistical Volume Elements (SVE)
are partitions of an RVE into smaller elements. Unlike the effective
properties derived from an RVE, homogenization of SVEs results in
apparent properties; these are not unique because they depend on
boundary conditions. To assess the convergence of material properties
with increasing volume element size, a hierarchy of bounds on SVE has
been developed [10–12]. This hierarchy of bounds is briefly stated here,

for further details, see also [13]:

[𝐶𝑅] ≡ ⟨𝑆𝑆
1 ⟩

−1 ≤ ⟨𝑆𝑆
𝛿′ ⟩

−1 ≤ ⟨𝑆𝑆
𝛿 ⟩

−1 ≤ [𝐶𝑒𝑓𝑓 ] ≤ ⟨𝐶𝐾
𝛿 ⟩ ≤ ⟨𝐶𝐾

𝛿′ ⟩ ≤ ⟨𝐶𝐾
1 ⟩ ≡ [𝐶𝑉 ]

∀𝛿 > 𝛿′ (3)

where [𝐶𝑒𝑓𝑓 ] is the effective constitutive tensor, [𝐶𝑅] and [𝐶𝑉 ] are the
Reuss and Voigt bounds, respectively, [𝐶𝐾 ] is the apparent stiffness
tensor obtained from a kinematically uniform boundary condition test
of the material, [𝑆𝑆 ] is the apparent compliance obtained from a
statically uniform boundary condition test of the material, 𝛿, 𝛿′ are
characteristic sizes of the SVE, and ⟨⋅⟩ denotes volumetric averaging.

The statistics of the population of SVE properties can provide a
consistent and repeatable method to approximate the variability of
properties due to the random microstructure [10,14–17]. In this work,
a population of SVE will be used to generate a probability distribution
whose mean value is an upper bound on the effective behavior of the
RVE and characterizes local variability. Here, this variability is used to
approximate variability in effective material properties.

An additional layer of complexity occurs when a wave is prop-
agating through a material with inherently random microstructural
characteristics and the angle between the wave propagating direction
and the orientation of fibers is uncertain. This angle of orientation
may be variable due to experimental error, or localized mis-alignment
of the fibers from the manufacturing process. The alignment error
may be considered small, yet results may be substantially affected,
especially where there is a high degree of anisotropy. Here, angular
orientation will be modeled with a Gaussian distribution for a small
range of angles as might be expected from experimental error or inexact
manufacturing.

For a transversely isotropic material, such as that studied in this
work, it is possible to identify a single property on which all of the
other properties needed for modeling are conditionally dependent.
Developing approximations of this conditional dependence allows wave
speed to be modeled using single random material property. Fiber
orientation, or mis-alignment, is independent of material properties. As
a result wave speed can be cast as a two dimensional random variable, a
function of a single material property and angular orientation, 𝑣(𝐶𝑖𝑗 , 𝜃),
based on Eqs. (1), and (2).

It is from this perspective that the wave speeds in a transversely
isotropic composites are studied. A joint distribution function of the
two random variables is constructed. Subsequent sampling from this
distribution produces a distribution of parameter pairs that are used to
simulate a population of wave speeds. Unlike an RVE-based calculation,
this population of wave speeds will contain variability characteristic of
a material whose effective properties include fluctuations. Conclusions
are then drawn about the relative significance of uncertainty due to
material properties, and uncertainty in wave angle relative to fiber
direction.

2. Construction of Statistical Volume Elements (SVE)

This work extends the results of previous work, which focused
on determining distributions of random properties based on a meso-
scale mechanical analysis of Statistical Volume Elements (SVE) [14].
In this work, as in [14], the material RVE is as shown in Fig. 1. This
RVE represents a transverse section of the composite with uniformly
distributed circularly cross-sectioned fibers. The centers of the fibers
are distributed randomly according to a Poisson process. The composite
phases, fiber and matrix, are assumed isotropic. The fiber was assigned
an elastic modulus of 100 GPa and the matrix an elastic modulus of 1
GPa; for simplicity in modeling, both phases were assigned a Poisson’s
ratio of 𝜈 = 0.3. The fiber volume fraction is approximately 12%. Based
on its construction, the composite is assumed to be statistically isotropic
in the plane of the RVE. Properties based on a finite element analysis
suggest that this is a reasonable assumption.

To construct the SVEs, the RVE was first divided into cells using
Voronoi tessellation. The Voronoi cells were constructed using each
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Fig. 3. Probability distribution functions based on SVE sizes 𝛿 = 2, 5, 10, and 20 for
RVE size 𝛿 = 100 (shown in Fig. 1), with material contrast ratio 100 ∶ 1 [14].

fiber cross-section as a center point. The cell then contains all points
that lie closer to one single fiber than to any other. Using this approach,
with a relatively small fiber radius, Voronoi cell boundaries do not in-
tersect any of the inclusions. Preventing the stiff fibers from intersecting
the SVE partition boundaries has been shown to reduce the impact of
contrast ratio on property bounds, make the choice of partition size less
critical to a mesoscale model and results in a model that is better able
distinguish between subtle microstructural differences [14].

Next, a square grid was laid over the tessellated RVE and SVEs were
assembled by grouping together all of the cells whose centroids were
within an individual square grid. The partition size was then defined as
the size of the square grid [14]. This work will focus on one partition
size, 𝛿 = 10, where 𝛿 is defined as 𝛿 = 𝑙𝑆𝑉 𝐸∕𝑑; 𝑑 is the inclusion
diameter, and 𝑙𝑆𝑉 𝐸 is the length of a single square in the overlaid
grid. Because only 100 SVEs result from a partition using 𝛿 = 10
partition size, data from a second microstructure, generated using the
same process, was included in the analysis.

In order to calculate apparent properties of each SVE, a set of
uniform displacement, plane strain boundary value problems were
solved using a finite element analysis. Uniform displacement boundary
conditions are more appropriate for implementation in FEA, which
enforces continuity of displacements but not necessarily continuity of
tractions. Properties were then calculated from the strain energy 𝑈
given by [10]:

𝑈 = 𝑉
2
{𝜎𝑖𝑗𝜖0𝑖𝑗}

= 𝑉
2
𝜖0𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝜖

0
𝑖𝑗

= 𝑉
2
[𝐶1111(𝜖011)

2 + 𝐶2222(𝜖022)
2 + 𝐶1212(𝜖012)

2

+ 2𝜖011𝐶1122𝜖
0
22 + 2𝜖022𝐶2212𝜖

0
12 + 2𝜖012𝐶1211𝜖

0
11].

(4)

𝑉 is the material volume, 𝜎̄𝑖𝑗 is the volume average of stress, 𝜖0𝑖𝑗 is the
constant loading strain and the 𝐶𝑖𝑗𝑘𝑙 are elements of the constitutive
stiffness tensor. These apparent properties correspond to upper bounds
on the effective properties.

Fig. 3 [14] shows distributions of the apparent property 𝐶1111,
as calculated from Eq. (4). This result is an element of the tensor
[𝐶𝐾

𝛿 ] in Eq. (3), where 𝛿 = 2, 5, 10 and 20. As expected given the
hierarchy of bounds, the mean of each set of SVE approaches the RVE
effective property with increasing SVE size. The standard deviation
decreases with increasing SVE size. In this work, as in the previous
work, probability distribution functions (PDF) are constructed using the
Principle of Maximum Entropy (PME).

Table 1
Statistical comparison of in-plane normal SVE apparent properties; 𝐶11
vs 𝐶22. Here 𝜌 is the Pearson correlation coefficient between the two
stiffnesses.

Mean (GPa) Var Skew 𝜌

𝐶11 1.18598 0.00136 0.347 –
𝐶22 1.18612 0.00133 0.388 0.962

Table 2
Statistical comparison of in-plane normal vs. shear SVE apparent prop-
erties; 𝐶11 vs 𝐶66. 𝜌 is the Pearson correlation coefficient between the
two stiffnesses.

Mean (GPa) Var Skew 𝜌

𝐶11 1.18598 0.00136 0.347 –
𝐶66 0.5752 0.00020 0.3824 0.9828

3. Transversely isotropic SVE model

Based on the approach described above, components of the elastic
stiffness tensor, 𝐶1111 = 𝐶11, 𝐶2222 = 𝐶22 and 𝐶1212 = 𝐶66, were
approximated for each SVE. These can be obtained from the strain
energy using simple loading conditions. They represent properties in
the transverse (𝑥1 − 𝑥2) plane of the fiber-reinforced composite.

A statistical analysis was performed on this data. Results comparing
the two in-plane normal stiffnesses are shown in Table 1, and indicate
that the in-plane normal stiffnesses, 𝐶11 and 𝐶22, are highly correlated
and have similar means, variance and skew. Marginal distributions
of the SVE properties were constructed using PME as in [14]. These
univariate PDFs are compared in Fig. 4a. A plot of 𝐶11 vs 𝐶22 is shown
in Fig. 4b. In prior work, [14], several partition sizes were considered.
As the partition size decreased, individual SVEs could no longer be
approximated as isotropic. However, for the partition size of 𝛿 = 10,
these results suggest that the assumption of isotropy for individual SVEs
is a reasonable one.

Comparisons of the in-plane normal stiffness and the in-plane shear
stiffness, 𝐶11 and 𝐶66, are shown in Table 2. These properties are
also highly correlated but have significantly different means and an
order of magnitude difference in the variance. Fig. 4c shows the two
marginal distributions for 𝐶11 and 𝐶66. These comparisons suggest that
the in-plane normal stiffness 𝐶11 and the in-plane shear stiffness 𝐶66 are
conditionally dependent.

The wave speed model given by Eq. (1) requires 𝐶44 and 𝐶66. The
model given by Eq. (2) requires 𝐶11, 𝐶33, 𝐶66 and 𝐶23 = 𝐶13. By taking
advantage of the assumption of transverse isotropy and approximating
the conditional dependence between parameters it is possible to present
the wave speeds as functions of a single material property, 𝐶66.

A linear regression line was fit to fiber volume fraction, vf, and
𝐶66; these data sets were drawn from the SVE analysis. This regression
function line was an excellent fit to the data. These linear functions will
be used to approximate vf from a simulated value of 𝐶66. A linear re-
gression line was fit to 𝐶11 and 𝐶66, which was also an excellent fit. The
longitudinal modulus 𝐸3 and the major Poisson’s ratio (longitudinal-
transverse), 𝜈31 were approximated by a rule of mixtures using the vf
was approximated above as a function of 𝐶66.

For materials with a high contrast ratio, i.e. fibers much stiffer
than the matrix, the longitudinal-transverse shear modulus can be
modeled [18], as

𝐺13 =
𝐺𝑚

1 − 𝑣𝑓
= 1

𝐶44
, (5)

where 𝐺𝑚 is the shear modulus of the matrix. In this way 𝐶44 can be
approximated using the 𝑣𝑓 approximated above as a linear function of
𝐶66. Wave speeds defined in Eq. (1) are then simulated by sampling
values of 𝐶66 (and 𝜃) and approximating 𝐶44.

For a transversely isotropic material, with the fiber direction 𝑥3 and
transverse plane 𝑥1−𝑥2, the stress–strain relationship for a transversely
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Fig. 4. Plot showing, (a) the overlapping distribution functions for 𝐶11 and 𝐶22 (b) paired values of 𝐶11 vs 𝐶22, 𝐶11 ≈ 𝐶22 and (c) in-plane normal and shear stiffness 𝐶11 and 𝐶66,
show distinct marginal distributions.

isotropic material is given in terms of the stiffness tensor by

𝝈 = 𝑪𝝐. (6)

The compliance tensor, S = C−1 is given by
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where 𝛥 = (𝐶11 − 𝐶12)[(𝐶11 + 𝐶12)𝐶33 − 2𝐶2
12], and 𝑆33 = 1∕𝐸3.

In terms of the engineering constants, S is given by
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Using the rule of mixtures approximations of 𝐸3, from Eqs. (7) and
(8),

𝐸3 = 𝐶33 −
𝐶2
13

𝐶11 − 𝐶66
. (9)

Substituting this into
−𝜈31
𝐸3

=
𝐶31

−2𝐶2
13 + 𝐶11𝐶33 + 𝐶12𝐶33

, (10)

and simplifying, yields

𝐶23 = 𝐶13 =
𝜈31

𝐶11 − 𝐶66
. (11)

Density was assumed to be constant and calculated using a rule of
mixtures and assuming a fiber volume fraction of 0.12. Density of the
fiber and matrix were approximated with those of a high modulus
carbon fiber and an epoxy matrix; a composite made of these materials
has a contrast ratio of ≈343∕3.5 = 98, similar to the model material
studied here.

4. Joint probability distributions

For many simulations modeling is done by sampling from a dis-
tribution. In previous work [14], marginal (univariate) distributions
were developed using the Principle of Maximum Entropy (PME) to
compare and contrast the effect of partition size, contrast ratio, and
microstructure on the distribution of composite properties. While the
underlying assumptions of the boundary conditions used in creating the
SVEs and the constraints adopted using PME do not represent the exact
random field of an apparent property [19], these marginal distributions
were shown to be a way to visually distinguish the differences between
the effects of microstructure and partitioning size. The procedure for
developing these marginal distributions can be found in [14,20].

However, in many cases predictive models of mechanical behavior
may involve a bivariate or joint distributions, where each of two ran-
dom variables falls in a range that is specific to each individual variable.
One such case is the determination of the velocities of ultrasonic waves
propagating in various directions through the composite. This is the
case for the wave speeds described above. A bivariate form of the PME,
therefore, was used to construct a joint distribution function between
the elastic stiffness 𝐶66 of a composite and the angular orientation of
the fibers, from 𝜃 = ±25◦. Thus wave speed 𝑣(𝐶66, 𝜃) is approximated
as a two-dimensional random variable.

The Principle of Maximum Entropy (PME) is based on the idea
that the ‘best’ probability density function describing a dataset is the
one that maximizes the uncertainty, provided that one accounts for
all a prioi information. This optimization results in a solution with
the maximum uncertainty, or the minimum embedded bias [21]. PME
has previously been used in combination with random matrix theory
to characterize the convergence of effective properties with increasing
size of mesoscale volume elements [22]. It has also been used in the
reconstruction of material microstructures [23] to model the evolving
properties of percolating nanostructures [24] and shown to be an effec-
tive method of developing prior probability distributions for Bayesian
inference [25].

A PME based joint probability distribution function 𝑝(𝑥, 𝑦), is the
function that maximizes Shannon’s entropy functional, 𝐻 , [21] given
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Fig. 5. Joint PME-PDF of 𝐶66 and 𝜃. (a) 2D rendering of joint PDF (b) cumulative distribution. As defined by the PME, density is zero outside the range of the stiffnesses defined
by the SVE. The values of 𝜃 are defined by a continuous normal distribution.

by

𝐻[𝑝(𝑥, 𝑦)] = −∫

∞

−∞
𝑝(𝑥, 𝑦) ln[𝑝(𝑥, 𝑦)] 𝑑𝑥 𝑑𝑦. (12)

Maximizing this functional results in the general form of a two dimen-
sional PME-PDF

𝑝(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) = 𝜆0 + 𝜆1𝑥 + 𝜆2𝑦 + 𝜆3𝑥𝑦 + 𝜆4𝑥
2 + 𝜆5𝑦

2, (13)

where the 𝜆𝑖, are Lagrange multipliers chosen to satisfy constraints
associated with a distribution function. In particular, the statistical
moments of the PME-PDF must match those of the data as well as the
standard normalization of a density function, i.e. the integral of the PDF
must be one. Additionally, since the population of apparent properties
are bounded, with minimums, 𝑥−, 𝑦− and maximums, 𝑥+, 𝑦+, the PDF
is assumed to be zero outside of these ranges.

The generalization of statistical moments for multivariate distri-
butions is fairly straightforward [26]. A bivariate joint distribution
function 𝑝(𝑥, 𝑦) will have a central moments of order 𝑘, 𝑙 defined as

𝜇𝑘𝑙 ≡ 
[

(𝑥 − 𝜇𝑥)𝑘(𝑦 − 𝜇𝑦)𝑙
]

= ∫ ∫ (𝑥 − 𝜇𝑥)𝑘(𝑦 − 𝜇𝑦)𝑙𝑝(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 (14)

where  is the expected value and 𝜇𝑥, 𝜇𝑦 are the mean values of 𝑥 and
𝑦 respectively. The function must satisfy the following conditions

∫

𝑌𝑚𝑎𝑥

𝑌𝑚𝑖𝑛
∫

𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛

𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 1 (0th normalization), (15)

∫

𝑌𝑚𝑎𝑥

𝑌𝑚𝑖𝑛
∫

𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛

(𝑥 − 𝜇𝑥)𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 𝜇10 (16)

∫

𝑌𝑚𝑎𝑥

𝑌𝑚𝑖𝑛
∫

𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛

(𝑦 − 𝜇𝑦)𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 𝜇01 (17)

∫

𝑌𝑚𝑎𝑥

𝑌𝑚𝑖𝑛
∫

𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛

(𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 𝜇11 (covariance), (18)

∫

𝑌𝑚𝑎𝑥

𝑌𝑚𝑖𝑛
∫

𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛

(𝑦 − 𝜇𝑦)2𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 𝜇02 (19)

∫

𝑌𝑚𝑎𝑥

𝑌𝑚𝑖𝑛
∫

𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛

(𝑥 − 𝜇𝑥)2𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 𝜇20 (20)

Discrete forms of these multivariate moments can be approximated
from the data using

𝜇10 =
1
𝑁

𝑁
∑

𝑖=1

(

𝑥𝑖 − 𝜇𝑥
)

(21)

𝜇01 =
1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − 𝜇𝑦
)

(22)

𝜇11 =
1
𝑁

𝑁
∑

𝑖=1

(

𝑥𝑖 − 𝜇𝑥
) (

𝑦𝑖 − 𝜇𝑦
)

(23)

𝜇02 =
1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − 𝜇𝑦
)2 (24)

𝜇20 =
1
𝑁

𝑁
∑

𝑖=1

(

𝑥𝑖 − 𝜇𝑥
)2 (25)

Here, 𝜇𝑟 is used to denote the sample rather than the population mean.

5. Results

The univariate probability distribution of 𝐶66 was developed from
SVE data. The distribution of 𝜃 was assumed Gaussian with a mean of
zero and standard deviation of 0.15, which resulted in an approximate
range of 𝜃 ∈ [−25◦, 25◦]. Paired data parameters, (𝐶66, 𝜃) were sampled
from the joint distribution and used to calculate wave speeds using
Eqs. (1) and (2). The joint probability distribution, and cumulative
distribution for composite stiffness, 𝐶66 and angle of fiber orientation,
𝜃 is shown in Fig. 5.

Wave speeds were calculated by sampling from this joint distribu-
tion; these results are shown by scatter plots in 6. Fig. 6a, b, and c show
the solution of the transverse wave equation (Eq. (1)).

Quasi-longitudinal and quasi-transverse waves are also considered
(Eq. (2)). The two roots of Eq. (2) correspond to waves that are neither
purely longitudinal (with displacements in the same direction as the
propagating wave) nor purely transverse. They have quasi-longitudinal
and quasi-transverse components. Fig. 6d, e, and f show solutions for
the negative real roots of Eq. (2) (quasi-transverse). Fig. 6g, h and i
show solutions for the positive real roots of Eq. (2) (quasi-longitudinal).
Quasi-longitudinal waves have velocities approximately an order of
magnitude higher than transverse and quasi-transverse waves [1].

For each type of wave (transverse, quasi-transverse and quasi-
longitudinal) represented by the three columns of Fig. 6, a three
dimensional scatter plot is given (Fig. 6a, d and g). To visualize the
three dimensional scatter plot from different directions, projections are
given showing only 𝜃 varying (Fig. 6b, e and h). Projections are also
given showing only 𝐶66 varying (Fig. 6c, f, i).

The variation of 𝜃 centered around 𝜃 = 0 shows the arch- and
inverted arch-type variation characteristic of the analytic functions
plotted in Fig. 2. Wave speeds for the transverse and quasi-longitudinal
waves decrease with increasing orientation angles. Waves speeds for
the quasi-transverse wave component increase with increasing angle.

The scatter shown in the projections in Fig. 6b, e and h is due to the
variation in material property. The wave speeds show greatest scatter
near the region where 𝜃 = 0. Over the full range of 𝜃 shown, the range
of the transverse wave speeds is almost 80% of the minimum speed;
the range of the quasi-transverse are roughly 12% of their minimum;
the range of the quasi-longitudinal are almost 14% of their minimum
value.
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Fig. 6. Scatter Plots of waves speeds associated with simulated parameters 𝐶66, 𝜃. In the first column, figs. a, b and c show results for transverse waves (Eq. (1)). In the second
column, figs. d, e, and f show results for quasi-transverse waves (negative real root Eq. (2)). In the third column, figs. g, h, and i show results for quasi-longitudinal waves (positive
real root Eq. (2)). The top row shows a 3D view of waves speeds as a function of stiffness and angle orientation (figs. a, d, g). The center row looks through the 3D scatter plot
from the perspective of varying (𝜃 figs. b, e, h). The bottom row looks through the 3D scatter plot from the perspective of varying 𝐶66 (figs. c, f, i).

Where only the variation in material property is considered (projec-
tions in Fig. 6c, f, g), wave speed increases with increasing values of
𝐶66. The majority of the data points are approaching this line; however,
significant outlying data points are scattered far from this line, without
preferential location with respect to the value of 𝐶66.

The effect of angular mis-alignment, based on the assumed distri-
bution of 𝜃 used in the analysis, begins at approximately ±3◦. Near
𝜃 = 0◦, (±10◦), increasing stiffnesses affect wave speeds more than
increasing angle. At large angles, both large and small stiffness can
produce similar, lower, waves speeds.

6. Summary and conclusions

The statistics described by a population of SVE was used to char-
acterize variability of composite properties in a transversely isotropic
fiber reinforced composite. The angle of wave propagation relative to
fiber orientation was considered a Gaussian random variable. Based
on this characterization, a probabilistic simulation of wave speeds
in a high a contrast random composite was performed using a joint
probability distribution function to sample a material stiffness and fiber
angle of orientation.

It was found that the use of probability distributions based on
SVE material properties is an effective way to introduce variability

into a simulation of material behavior under uncertain load (in this
case, wave speed under an uncertain angle of wave orientation). In a
general sense, using SVE material property distributions allows for a
comparative analysis of which uncertain parameter has more bearing
on the results of a mechanical analysis. Under the conditions presented
here, it has been shown that wave orientation angle has relatively more
significance than the variation in material property in a wave speed
analysis.

The variation in material properties has been captured based on
the morphology of the material microstructure. The relationship be-
tween SVE size 𝛿 and the variability introduced in the analysis is
well understood through the hierarchy of bounds on material effective
behavior. In an application where a conservative approach calls for
over-estimation of the material stiffness, the current approach can be
used to bound the effective property from above. Where a conserva-
tive approach calls for under-estimation of material stiffness, an SVE
analysis based on statically uniform boundary conditions could be
used. In this way, conservative numerical simulations can be developed
to capture uncertainty in the response of a population of nominally
identical samples with randomly varying microstructure.

In future work it would be useful to consider the effect of the
assumed distributions of 𝜃. This could affect the angle where the effects
start to take place, (≤ ±3◦) as well as the relative impact of the variable
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stiffnesses. An investigation of the different partition sizes, potentially
weakening the assumption of transverse isotropy, but increasing the
bounds on stiffnesses would also be interesting. Finally, the effect
of contrast ratio, relatively high in the presented work, should be
considered.
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